Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Data ; 10(1): 705, 2023 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-37845258

RESUMEN

In the United Arab Emirates, sudden decline syndrome (SDS) is a destructive disease of date palm caused by the soil-borne fungal pathogen Fusarium proliferatum (Fp) DSM106835. Here, a high-resolution genome assembly of Fp DSM106835 was generated using PacBio HiFi sequencing with Omni-C data to provide a high-quality chromatin-organised reference genome with 418 scaffolds, totalling 58,468,907 bp in length and an N50 value of 4,383,091 bp from which 15,580 genes and 16,321 transcripts were predicted. The assembly achieved a complete BUSCO score of 99.2% for 758 orthologous genes. Compared to seven other Fp strains, Fp DSM106835 exhibited the highest continuity with a cumulative size of 44.26 Mbp for the first ten scaffolds/contigs, surpassing the assemblies of all examined Fp strains. Our findings of the high-quality genome of Fp DSM106835 provide an important resource to investigate its genetics, biology and evolutionary history. This study also contributes to fulfill the gaps in fungal knowledge, particularly the genes/metabolites associated with pathogenicity during the plant-pathogen interaction responsible for SDS.


Asunto(s)
Fusarium , Genoma Fúngico , Cromosomas , Fusarium/genética
2.
Front Plant Sci ; 13: 904166, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35968092

RESUMEN

In the United Arab Emirates (UAE), sudden decline syndrome (SDS) is one of the major fungal diseases caused by Fusarium solani affecting date palm plantations. To minimize the impact of the causal agent of SDS on date palm, native actinobacterial strains isolated from rhizosphere soils of healthy date palm plants were characterized according to their antifungal activities against F. solani DSM 106836 (Fs). Based on their in vitro abilities, two promising biocontrol agents (BCAs), namely Streptomyces tendae UAE1 (St) andStreptomyces violaceoruber UAE1 (Sv), were selected for the production of antifungal compounds and cell wall degrading enzymes (CWDEs), albeit their variations in synthesizing 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase (ACCD). Although both isolates showed antagonism when applied 7 days before the pathogen in the greenhouse experiments, the ACCD-producing Sv was relatively superior in its efficacy against SDS over the non-ACCD-producing St. This was evident from the symptoms of SDS in diseased date palm seedlings which were greatly reduced by Sv compared to St. On a scale of 5.0, the estimated disease severity indices in Fs-diseased seedlings were significantly (P < 0.05) reduced from 4.8 to 1.5 and 0.5 by St and Sv, respectively. Thus, the number of conidia of Fs recovered from plants pre-treated with both BCAs was comparable, but significantly (P < 0.05) reduced compared to plants without any BCA treatment. In addition, a significant (P < 0.05) decrease in ACC levels of both the root and shoot tissues was detected inSv + Fs seedlings to almost similar levels of healthy seedlings. However, in planta ACC levels highly increased in seedlings grown in soils infested with the pathogen alone or amended with St prior to F. solani infestation (St + Fs). This suggests a major role of ACCD production in relieving the stress of date palm seedlings infected with F. solani, thus supporting the integrated preventive disease management programs against this pathogen. This is the first report of effective rhizosphere actinobacterial BCAs to provide protection against SDS on date palm, and to help increase agricultural productivity in a more sustainable manner in the UAE and the other arid regions.

3.
J Fungi (Basel) ; 8(1)2021 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-35049948

RESUMEN

Thirty-one endophytic streptomycete and non-streptomycete actinobacteria were isolated from healthy date palm root tissues. In vitro screening revealed that the antifungal action of isolate #16 was associated with the production of cell-wall degrading enzymes, whereas with diffusible antifungal metabolites in isolate #28, albeit their production of volatile antifungal compounds. According to the 16S rRNA gene sequencing, isolates #16 and #28 were identified as Streptomyces polychromogenes UAE2 (Sp; GenBank Accession #: OK560620) and Streptomyces coeruleoprunus UAE1 (Sc; OK560621), respectively. The two antagonists were recovered from root tissues until 12 weeks after inoculation, efficiently colonized root cortex and xylem vessels, indicating that the date palm roots are a suitable habitat for these endophytic isolates. At the end of the greenhouse experiments, the development of sudden decline syndrome (SDS) was markedly suppressed by 53% with the application of Sp and 86% with Sc, confirming their potential in disease management. Results showed that the estimated disease severity indices in diseased seedlings were significantly (p < 0.05) reduced from 4.75 (scale of 5) to 2.25 or 0.67 by either Sp or Sc, respectively. In addition, conidial numbers of the pathogen significantly (p < 0.05) dropped by 38% and 76% with Sp and Sc, respectively, compared to infected seedlings with F. solani (control). Thus, the suppression of disease symptoms was superior in seedlings pre-inoculated with S. coeruleoprunus, indicating that the diffusible antifungal metabolites were responsible for F. solani retardation in these plants. This is the first report of actinobacteria naturally existing in date palm tissues acting as microbial antagonists against SDS on date palm.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...